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molecule 1, the cytosine is involved in Watson-Crick base pairing 
with a second dimer (1,2) (see Figure 1). In addition the cytosine 
bases of molecule 2 are strongly stacked, as schematically depicted 
in Figure 3. Finally, stacking occurs between the cytidine base 
of molecule 2 and the G(I) of a neighbouring molecule 2 (not 
shown). 

In summary, it is concluded that the GG part of the described 
structure appears to be similar to the structure found in the crystal 
structure16 of CW-Pt(NH3)HpGpG). As a result of intermolecular 
interactions of the cytosines, the conformation of this nucleobase 
in the structure—especially with respect to its stacking on the 
central guanine—does not reflect the conformation of the com­
pound in solution. 
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The recent observation1 that the (100) face of MoO3 can 
catalytically convert propylene into acrolein is of much interest 
and may be used as a model to understand the catalytic properties 
of bismuth molybdates.2 To explain the olefin adsorption, the 
existence of an "open" Mo atom on the surface, hence prere­
duction, was suggested. Consequently, not all the Mo atoms3 can 
be d0 (in a +6 oxidation state), a fact in sharp contrast with the 
assumption4 of an empty d band in bismuth molybdate catalysts. 

To probe the electronic implications of this prereduction step, 
band structure calculations5 were carried out on both naked MoO3 
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Figure 1. Projected density of states (DOS) of xy (dotted line) and yz/xz 
(solid line) of the Mo atoms in the surface 1; the labels «F (d0) and cF 
(d0+0,333) refer to the Fermi level for various electron counts. The to­
pology of the xy band at the T point is also indicated, from a top view. 

and the whole surface/olefin system. The analysis shows that (i) 
the surface acquires a metallic character which enhances its ability 
to chemisorb the olefin and (ii) the extra electron density is not 
localized on the open metallic site but in bulk like states. This 
"reservoir" is emptied upon adsorption, thereby filling a new set 
of surface/adsorbate bonding states which fall below the Fermi 
level. A stronger chemisorption results. 

The (100) face of MoO3, perpendicular to the natural cleavage 
plane of layered7 MoO3, has never been structurally characterized. 
The calculations were performed on a three-layer ribbon with two 
Mo atoms in the outermost layer belonging to the unit cell;8 in 
this model,12 one (Mo1) retains the apical oxygen away from the 
bulk while the other (Mo2)—the site—is opened, as shown in 1. 
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by an experimental study of the catalytic properties of doped 
MoO3.

17 Yet, our complementary calculations9 on the (100) 
Mo03/propene system point out that prereduction plays a crucial 
role in the rate-determining step, the first C-H scission, toward 
acrolein formation. This finding may be supported by infrared 
and ESR measurements showing18 that the Mo atoms are reduced 
in the catalytic cycle with the Bi2Mo3O12 system. 
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Figure 2. Schematic interaction diagram between the surface and the 
propene adsorbate, see text. The circled "plus" means "bonding". 

Reduction of the surface, i.e., populating its d band, does not 
localize the electrons in the Mo2 xz and yz x-type of hybrids 
despite the removal of an apical 7r-donor, see 2. Rather, the xy 
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states displaying Mo-Mo c overlap parallel to the surface develops 
into a band wide enough for its bottom to lie below the protruding 
xzjyz hybrids and house the extra electron density. Figure 1 
illustrates this point. 

Sticking a propene above Mo2 turns on a a donation from ir 
into z2 as noted4 by Anderson. However, bonding states are also 
generated between empy xzjyz of Mo2 and ir* of C2H4. These 
states, empty in an overall d0 surface, emerge below13 the bottom 
of xy not involved in the adsorption and get filled by electron 
transfer in the reduced system. Figure 2 describes schematically 
this mechanism and is based on a DOS analysis of the overall 
system. Numerically the reduction process was simulated by 
injecting14 one or two electrons in the unit cell starting from a 
d0 system. With e representing the averaged15 extra electron 
population and A the variation of electron population between after 
and before adsorption, we have for « = 0.333, A(xy) = -0.324, 
\(xz I yz) = +0.994, A(z2) = +0.138, A(x) = -0.15, and A(Tr*) 
= +0.45. Prereduction strengthens the C2H4/Mo03 bonding; the 
averaged Mo-C overlap population goes from O. IO (t = O) to 0.25 
(« = 0.333). The surface xy states act as a "reservoir", temporarily 
storing the electron density that it eventually pours into new 
surface/adsorbate bonding levels.16 These electronic factors may 
constitute the raison d'etre of the prereduction. These conclusions 
are drawn out of semiquantitative computations; further insight 
could be gained from more sophisticated calculations and perhaps 

(13) With a chemically reasonable Mo-C distance of 2.1 A. 
(14) The amount of electron density referred to is small enough to justify 

the rigid band model. 
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Cyclopropylamine radical cations have been implicated in the 
mechanism of inactivation of monoamine oxidase and cytochrome 
P-450 by cyclopropylamines.1'2 The key step in the proposed 
mechanism is illustrated for the parent compound in Scheme I 
and consists of the ring opening of the aminium radical cation 
1 to the carbon-centered radical 2 which subsequently attacks the 
active site of the enzyme.2 Here we present ESR evidence for 
this ring-opening reaction and report that 2 is not converted to 
the nitrogen-centered radical 3 whereas the corresponding reaction 
for the neutral radical (5 —• 6 in Scheme II) proceeds to com­
pletion at similar temperatures. These results provide a firm basis 
for the radical cation mechanism of enzyme inactivation,1'2 in 
keeping with the structural evidence that the inactivator is bound 
to the enzyme through carbon rather than nitrogen.2 

The radical cation from cyclopropylamine was generated ra-
diolytically in several Freon matrices,3 CFCl3 and CF3CCl3 being 
the most suitable for the study of the sequestered radical cation. 
Figure 1 shows the ESR spectrum of the ring-opened radical cation 
2,4 the (3-hydrogen hyperfine couplings differing significantly from 
those for neutral CH 2CH 2CH=NR radicals5 (Table I). The 
formation of 2 from 1 can be rationalized by considering the 
HOMO of cyclopropylamine,6 the removal of an electron from 
this 1 la' orbital leading to a weakening of the C-C bonds. That 
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